
Phytotherapeutic Support of Thyroid Function
by Joseph Collins, ND

Recent health and nutrition information from Douglas Laboratories	 January 2007

up to 20 percent of certain subjects may display its subclinical 
form.  The prevalence of subclinical hypothyroidism is about 
4 to 8.5 percent, and may be as high as 20 percent in 
women older than 60 years.

Subclinical hypothyroidism is defined as TSH above the 
upper reference limit with normal levels of free T4.  Several 
investigations have shown that patients with subclinical 
hypothyroidism have subtle symptoms and signs of mild 
thyroid failure, that subclinical hypothyroidism can have 
significant effects on peripheral target organs, and there is a 
high rate of progression towards overt hypothyroidism. This 
progressive worsening of thyroid function may be explained 
in part by the presence of T3 nuclear receptors (TR) in 
thyroid cells, which demonstrate autocrine actions of thyroid 
hormones, and suggests that decreased thyroid function 
propagates further decrease in thyroid function.   Even 
thyroid tissue requires proper function of thyroid hormones 

Introduction

The thyroid gland is the small, butterfly-shaped gland 
found just below the Adam’s apple. As the primary 
endocrine gland responsible for modulating the metabolic 
rate, optimal thyroid function is required for healthy function 
of every cell within the human body and plays a critical 
role in both maintaining the quality of life and decreasing 
the risks of diseases. Hypothyroidism (underactivity of the 
thyroid gland) occurs when the thyroid gland produces less 
than the normal amount of thyroid hormones. The result of 
not producing enough thyroid hormone is a “slowing down” 
of many bodily functions. If left untreated, decreased thyroid 
function can cause elevated cholesterol levels and subsequent 
heart disease, infertility, muscle weakness, osteoporosis and, 
in extreme cases, coma or death. 

While decreased thyroid function is commonly associated 
with weight gain, fatigue, cold intolerance and depression, 
suboptimal thyroid function has also been associated with 
increased frequency of heart failure, coronary heart disease, 
dementia, insulin resistance, and dilated cardiomyopathy  and 
increased risk of breast cancer. In addition, hypothyroidism 
is commonly a co-morbidity factor in cancer, schizophrenia, 
chronic hepatitis C infection, bipolar disorders, other 
psychiatric illnesses, and adrenal insufficiency. 

Suboptimal Thyroid Function
Autoimmune hypothyroidism (Hashimoto’s disease), is 

the most common thyroid disease in the United States. It is 
an inherited condition that affects approximately 14 million 
Americans and is about 7 times more common in women 
than in men. Although autoimmune hypothyroidism may be 
temporary, it usually is a permanent condition. 

While autoimmune hypothyroidism is a common 
condition, recent epidemiological studies demonstrated that 
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to perform the act of making those very hormones.

Although suboptimal thyroid function may be sub-classified 
into hypothyroidism and subclinical hypothyroidism, they 
both can present with subjective and objective data that 
indicate deterioration in quality of life and increased risks 
of diseases. 

Even though a Consensus Development Conference held 
in September of 2002 recommended against population 
screening for subclinical thyroid disease, clinicians are 
encouraged to make individual patient assessments when 
determining the need for testing and treatment.

Iodine and Iodine Uptake
Proper function of thyroid hormones involves a number of 

intricate processes, beginning with adequate and consistent 
intake of dietary iodine. While providing dietary iodine is the 
first step, the uptake of the iodine by thyroid cells (thyrocytes) 
requires proper function of sodium-iodide-symporter (NIS) 
proteins. Thyroid follicular cells transport iodide from blood 
into the follicular lumen against an iodide gradient by 

means of coupled transport of Na+ ions and I- ions via NIS 
proteins under the influence of TSH. The proinflammatory 
cytokines, IL-1alpha, IL-1beta, IL-6, and TNF-alpha have 
each demonstrated the ability to decrease TSH induced 
expression of NIS proteins.  Herein lies the next impedance 
to optimal thyroid function – inflammation reduces uptake of 
iodide by thyrocytes. 

While phytotherapeutic agents which provide dietary 
iodine support the first step in hormonogenesis, support 
of NIS proteins function and control of proinflammatory 
cytokines are also required to promote optimal thyroid 
function in these initial steps of thyroid hormonogenesis. 

Iodine and Iodine Uptake Phytotherapeutics
Sea Kelp (Ascophyllum nodosum) is an excellent dietary 

source of iodine. An additional benefit of Ascophyllum 
nodosum is its ability to increase glutathione peroxidase 
activity, an important antioxidant. Human thyrocytes 
synthesize and secrete extracellular glutathione peroxidase, 
which translocates into the intracellular space and  prevents 
peroxidative damage of thyrocytes from diffusion of 
extracellular H202 during stimulation of thyroid-hormone 
synthesis. Ascophyllum nodosum may therefore decrease 
occurrence of autoimmune thyroid disease, since thyrocytes 
exposed to locally increased H202 increase the risk 
autoimmune thyroid disease.

Bladderwrack (Fucus vesiculosus), another dietary source 
of natural iodine also demonstrates anti-estrogen properties 
in both human and animal studies, suggesting that it may 
contribute protective health to estrogen sensitive tissues.

Ascophyllum nodosum and Fucus vesiculosus both provide 
fucoidan a sulfated polysaccharide that has a wide variety 
of biological activities including antioxidant, anti-thrombotic, 
anti-inflammatory and anti-autoimmune effects.

Humulus lupulus (Hops), contains xanthohumol, a chalcone 
that enhances uptake of iodine into the thyroid gland 
by activation of sodium-iodide-symporter (NIS) proteins. 
Xanthohumol also repressed activation of NF-kappaB, thereby 
decreasing the expression of proinflammatory cytokines such 
as TNF-alpha and IL-6, which as noted, can interfere with 
function of NIS proteins.

Coleus (Coleus forskohlii) contains forskolin, which is 
specifically able to mimic the effect of TSH in regard to iodide 
uptake, organification of iodine, thyroglobulin (TG) production, 
and promote secretion of T3 & T4, through an increase in the 
expression of sodium/iodide symporter (NIS) proteins.

Collectively, Ascophyllum nodosum, Fucus vesiculosus, 
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Humulus lupulus and Coleus forskohlii are able to provide 
iodine and enhance its uptake into thyrocytes. 

T3 & T4 Production and Secretion from Thyrocytes
The next two steps in proper thyroid function involve 

the production of thyroid hormones by thyrocytes, and the 
secretion of thyroid hormone from those cells. 

The production of thyroid hormones by thyrocytes 
typically begins with the sulfation of tyrosine residues in 
thyroglobulin, a process which is under the control of TSH.  
There is a close correlation between the sulfated tyrosine 
content of thyroglobulin and the production of thyroid 
hormones. 

The sulfated tyrosine is then acted upon by thyroperoxidase 
(TPO), an enzyme mainly expressed in the thyroid that binds 
iodine onto the tyrosine residues on thyroglobulin for the 
production of thyroxine (T4) or triiodothyronine (T3), a 
process called “organification of iodine”.

Phytotherapeutics for T3 & T4 Production and 
Secretion from Thyrocytes

As noted, Coleus (Coleus forskohlii) mimics the effect of 
TSH in regard to iodide uptake, organification of iodine, 
thyroglobulin (TG) production, and promotes secretion of T3 
& T4.   Consequentially, Coleus extracts play an important 
role in this step of thyroid function.

Bacopa monniera (also known as Brahmi) exhibits 
thyroid stimulating abilities through an increase of T4 serum 
concentrations in animal studies. The increase of T4 by 
41% without any notable increase in T3 or hepatic activity 
suggests that the action of Brahmi has more to do with 
direct thyroid stimulating activity than it does with hepatic 
conversion to T3.

Ashwagandha (Withania somnifera) is another plant 
that directly affects production of thyroid hormones. Animal 
studies during the late 1990s demonstrated its ability to 
directly act on thyroid tissue to bring about a rise in serum 
levels of thyroid hormones.   A case review in late 2005 
presented a 32 year old woman who increased her dosage 
of ashwagandha to the point where she actually caused 
an excessive rise of her thyroid hormone levels, though the 
symptoms resolved spontaneously after discontinuation of the 
ashwagandha capsules and laboratory values normalized.  
This case review reveals that serum levels of thyroid hormone 
can also be raised in humans, though excessive dosages 
should be avoided. 

Coleus forskohlii, Bacopa monniera and Withania 
somnifera work together to support the optimal function of 

thyroid hormone production and secretion by thyrocytes. 

Optimal Conversion of T4 to T3, with Decreased 
rT3 Production 

The thyroid hormone thyroxine (T4) is converted to 
the more active form triiodothyronine (T3) by the 5’-
iodothyronine deiodinase (5’DI) enzyme. Inhibition of 5’DI is 
associated with decreased production of T3, and a relative 
increase of reverse T3 (rT3), a relatively inactive form of the 
hormone.

This relative elevation of rT3 levels with suppression of 
T3 is associated with clinical presentation of hypothyroidism, 
despite normal to elevated thyroxine (T4), and normal 
TSH levels.  This shift in thyroid hormone metabolism, with 
increased rT3/T3 ratio, has been associated with inactivation 
of type I 5’-iodothyronine deiodinase (5’DI) enzyme, by NF-
kappaB. Activation of NF-kappaB also leads to increased 
expression of proinflammatory cytokines such as TNF-alpha 
and IL-6 which moderately decrease 5’DI activity.

Phytotherapeutics for Optimal Conversion of T4 
to T3, with Decreased rT3 Production

Phytotherapeutic agents targeted to support optimal 
thyroid hormone metabolism towards T3 and away from 
rT3, include agents which directly increase iodothyronine 
deiodinase activity, such as forskolin from Coleus forskohlii, 
and agents which preserve iodothyronine deiodinase activity 
by decreasing NF-kappaB activation, such as xanthohumol 
from Humulus lupulus, guggulsterones from Commiphora 
mukul, Carnosol from Rosmarinus officinalis, and withanolides 
from Withania somnifera. 

In addition to decreasing NF-kappaB activation, 
guggulsterones also directly stimulate triiodothyronine (T3) 
production through its action on liver enzymes, while also 
increasing the activity of endogenous antioxidants.

Coleus forskohlii, Humulus lupulus, Commiphora mukul, 
Rosmarinus officinalis and Withania somnifera all support 
the important step of converting T4 to the more active T3, 
while opposing the production of the less potent reverse T3.

Thyroid Receptor Coupling and Expression in 
Target Genes 

The final steps in proper thyroid function involve the 
coupling of membrane receptors to allow thyroid hormones 
to enter target cells and affect the hormone/receptor complex 
on target genes.

Thyroid hormone receptor (TR) are nuclear receptors 
involved in the regulation of cellular response to the thyroid 
hormone triiodothyronine (T3). Cellular response takes place 
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after TRs allow T3 binding to T3 response elements (TRE) in 
target genes within the nuclear DNA. In order for a thyroid 
hormone receptor (TR) to bind to TREs, the TR must first 
couple with Retinoid-X-receptors (RXR) in a process called 
heterodimerization. Heterodimerization is the coupling of 
two different nuclear receptors to create a heterodimer, such 
as the RXR/TR heterodimer, which has been proposed to be 
the principle mediator of target gene regulation on target 
cells by T3 hormone.

Phytotherapeutics for Thyroid Receptor Coupling 
and Expression in Target Genes

Phytotherapeutic agents which support the function of 
receptor elements and the down regulation of substances 
that interfere with receptor function have notable clinical 
application in optimizing thyroid function. 

Agents targeted to support optimal thyroid hormone 
function by promoting the function of RXR receptors 
include Rosemary (Rosmarinus officinalis) and Sage (Salvia 
officinalis) which provide carnosic acid, a polyphenolic 
diterpene that at low concentrations increases the expression 
of RXR receptors.   As previous noted phytotherapeutic 
agents that decrease NF-kappaB activation include 
xanthohumol from Humulus lupulus, guggulsterones from 
Commiphora mukul, Carnosol from Rosmarinus officinalis, 
and withanolides from Withania somnifera.  The improved 
function of RXR may be another reason why these agents 
display thyroid supporting actions. Decreased NF-kappaB 
activation is important for receptor function because NF-
kappaB directly interacts with the DNA-binding domain 
of RXR and may prevent its binding to the targeted DNA 
sequences nuclear receptor-regulated systems where RXR 
is a dimerization partner, such as the RXR/TR heterodimer.  
The RXR/TR initiated gene expression may be enhanced 
2.5 to 3-fold by forskolin, the protein kinase A activator the 
occurs in Coleus forskohlii. 

A Final Note on Thyroid Receptors
Proper function of thyroid receptors also requires avoidance 

of known endocrine dysruptors. Gene expression of RXR, a 
partner heterodimerization of TRs, may be suppressed by 
bisphenol A (BPA), which is known as an estrogenic and anti-
thyroid hormonal endocrine disrupter.   Bisphenol A is used 
in the manufacturing of polycarbonate plastic widely used 
in water and food containers and epoxy resins that are used 
for coating the inside of cans used for canning food. A large 
number of environmental pollutants and other xenobiotics 
also negatively affect signaling pathways, in which nuclear 
receptors are involved.  

By avoiding endocrine disruptors, and by using 
phytotherapeutic agents that support both the production 
of thyroid hormones as well as their utilization by tissues, 
clinicians play an important role in helping to support optimal 
thyroid health.
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